59 research outputs found

    PhD Thesis Proposal: Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Get PDF
    Resource optimization in health care, manufacturing, and military operations requires the careful choreography of people and equipment to effectively fulfill the responsibilities of the profession. However, resource optimization is a computationally challenging problem, and poorly utilizing resources can have drastic consequences. Within these professions, there are human domain experts who are able to learn from experience to develop strategies, heuristics, and rules-of-thumb to effectively utilize the resources at their disposal. Manually codifying these heuristics within a computational tool is a laborious process and leaves much to be desired. Even with a codified set of heuristics, it is not clear how to best insert an autonomous decision-support system into the human decision-making process. The aim of this thesis is to develop an autonomous computational method for learning domain-expert heuristics from demonstration that can support the human decision-making process. We propose a new framework, called apprenticeship scheduling, which learns and embeds these heuristics within a scalable resource optimization algorithm for real-time decision-support. Our initial investigation, comprised of developing scalable methods for scheduling and studying shared control in human-machine collaborative resource optimization, inspires the development of our apprenticeship scheduling approach. We present a promising, initial prototype for learning heuristics from demonstration and outline a plan for our continuing work

    Heterogeneous Learning from Demonstration

    Full text link
    The development of human-robot systems able to leverage the strengths of both humans and their robotic counterparts has been greatly sought after because of the foreseen, broad-ranging impact across industry and research. We believe the true potential of these systems cannot be reached unless the robot is able to act with a high level of autonomy, reducing the burden of manual tasking or teleoperation. To achieve this level of autonomy, robots must be able to work fluidly with its human partners, inferring their needs without explicit commands. This inference requires the robot to be able to detect and classify the heterogeneity of its partners. We propose a framework for learning from heterogeneous demonstration based upon Bayesian inference and evaluate a suite of approaches on a real-world dataset of gameplay from StarCraft II. This evaluation provides evidence that our Bayesian approach can outperform conventional methods by up to 12.8%

    Do People Trust Robots that Learn in the Home?

    Full text link
    It is not scalable for assistive robotics to have all functionalities pre-programmed prior to user introduction. Instead, it is more realistic for agents to perform supplemental on site learning. This opportunity to learn user and environment particularities is especially helpful for care robots that assist with individualized caregiver activities in residential or nursing home environments. Many assistive robots, ranging in complexity from Roomba to Pepper, already conduct some of their learning in the home, observable to the user. We lack an understanding of how witnessing this learning impacts the user. Thus, we propose to assess end-user attitudes towards the concept of embodied robots that conduct some learning in the home as compared to robots that are delivered fully-capable. In this virtual, between-subjects study, we recruit end users (care-givers and care-takers) from nursing homes, and investigate user trust in three different domains: navigation, manipulation, and preparation. Informed by the first study where we identify agent learning as a key factor in determining trust, we propose a second study to explore how to modulate that trust. This second, in-person study investigates the effectiveness of apologies, explanations of robot failure, and transparency of learning at improving trust in embodied learning robots.Comment: Presented at Machine Learning in Human-Robot Collaboration: Bridging the Gap (ML HRC) workshop at HRI 202

    FedPC: Federated Learning for Language Generation with Personal and Context Preference Embeddings

    Full text link
    Federated learning is a training paradigm that learns from multiple distributed users without aggregating data on a centralized server. Such a paradigm promises the ability to deploy machine-learning at-scale to a diverse population of end-users without first collecting a large, labeled dataset for all possible tasks. As federated learning typically averages learning updates across a decentralized population, there is a growing need for personalization of federated learning systems (i.e conversational agents must be able to personalize to a specific user's preferences). In this work, we propose a new direction for personalization research within federated learning, leveraging both personal embeddings and shared context embeddings. We also present an approach to predict these ``preference'' embeddings, enabling personalization without backpropagation. Compared to state-of-the-art personalization baselines, our approach achieves a 50\% improvement in test-time perplexity using 0.001\% of the memory required by baseline approaches, and achieving greater sample- and compute-efficiency.Comment: Andrew Silva and Pradyumna Tambwekar contributed equally towards this wor
    • …
    corecore